Printed Pages - 8

328455 (28)
 BE (4 ${ }^{\text {th }}$ Semester)

Examination, Nov.-Dec., 2021

Branch : Et \& T

SIGNALS AND SYSTESM (NEW)

Time Allowed : Three Hours
Maximum Marks : 80

- Minimum Pass Marks : 28

Note : (i) Part (a) is compulsory for every unit.
(ii) Attempt any two parts from (b), (c) \& (d).

Unit-I

Q. 1. (a) Define causal \& non-causal system with example.
(b) Check whether the given signals are energy signal or power signal or neither :
(i) $x(t)=e^{-a|t|}$ for $a>0$
(ii) $x(t)=e^{-5 t} u(t)$
(c) (i) For the given signal $x(t)$. Plot the following wave forms :
(1) $x(2 t)$
(2) $x(-t)$
(3) $x(t+1)$

(ii) Draw even \& odd components of $x(n): 4$

(d) (i) Write the difference between energy \& power signal. 4
(ii) If $y_{1}(t) \& y_{2}(t)$ are two periodic signals with two periods $T_{1} \& T_{2}$ respectively.

Find the suitable condition, so that $y(t)=y_{1}(t)+y_{2}(t)$ will be periodic. What will be the fundamental period of $y(t) .3$

Unit-II

Q. 2. (a) Write Dirichlet condition for the existence of

Fourier series 2
(b) Find the trignometric Fourier series of full
wave rectified signal shown below :

(c) Write \& prove any seven properties of

Fourier transform.
(d) Find the Fourier transform of the following
signal :
(i) $x(t)=$ Gate function

(ii) $x(t)=A \cos w_{0} t$
(iii) $x(t)=A \sin w_{0} t$

Unit-III

Q. 3. (a) Write the condition for stability \& causality of any discrete sequence $h(n)$. 2
(b) Determine the z-transform of the following signal \& also plot its ROC.

$$
x(n)=2^{n} u(-n)+3(1 / 2)^{n} u(n)
$$

(c) Find the inverse z-transform of $x(z)$ using partial fraction method :

$$
x(z)=\frac{1-\frac{1}{2} z^{-1}}{\left(1+3 / 4 z^{-1}+1 / 8 z^{-2}\right)},|z|>\frac{1}{2}
$$

(d) Given an LTI system with system function :
(i) $\mathrm{H}(\mathrm{z})=\frac{1}{\left(1-0.2 z^{-1}+0.4 z^{-2}+0.8 z^{-3}\right)}$

(6)

(ii) $H(z)=\frac{1}{\left(1-1 / 4^{-1}\right)}$
find difference equation for both.

Unit-IV

Q. 4. (a) Define transfer function.
(b) By using continuous time convolution integrals find out the response of the system to unit step input signal, impulse response is given by :

$$
h(t)=R / L e^{-t R / L} u(t)
$$

(c) A causal LTI discrete time system is described by the following difference equation :

$$
y(n)=\frac{4}{5} y(n-1)+x(n)
$$

Determine :
(i) impulse response
(ii) step response
(iii) Is the system stable ?

(7)

(d) Consider an LTI system with input $x(n)$ \& impulse response $h(n)$ given as: 7

$$
\begin{aligned}
& x(n)=2^{n} u(-n) \\
& h(n)=u(n)
\end{aligned}
$$

find the output of the system using convolution sum.

Unit-V

Q. 5. (a) Define state of the system.
(b) Consider the discrete time LTI system shown below in figure. Find the state space representation of the system by choosing the output of unit-delay element-1 and element-2 as state variable $\mathrm{q}_{1}[n] \& \mathrm{q}_{2}[n]$ respectively. 7

(8)

(c) Consider the RLC circuit shown in below figure. Let the output $y(t)$ be the loop current. Find a state space representation of the ckt. 7

(d) Find state equation of a discrete-time system

$$
\begin{aligned}
& \text { described by: } \\
& y[n]-3 / 4 y[n-1]+1 / 8 y[n-2]=x[n]
\end{aligned}
$$7

